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It has been suggested that the rheological properties of soils be modeled by the integral Volterra equation of
the second kind of the nonlinear heredity theory and by the differential equation which, under certain condi-
tions, approximately replaces the adopted integral equation. Parameters of these governing equations have
been found from experimental data for a number of soils. The processes of creep of soils have been studied.

At present, the problem of conservation and improvement of soil fertility is one of the most pressing environ-
mental problems; large numbers of scientists are engaged in solving it. However, a number of negative anthropogenic
effects impede the conservation of soil fertility.

There are a great number of works devoted to elucidating relations between loads and deformations in soils
and to studying changes in the properties of soils under the effect of outer loads [1–3], although this complex problem
has not yet been properly solved. Computing methods based on the results of theoretical and experimental studies of
the processes occurring in deformation of soils must play an important role in the development of a complex of meas-
ures aimed at conserving soil fertility.

The accuracy of the computing methods of determination of the compaction factors of soils under the effect
of outer loads depends first of all on the choice of mathematical models of deformation of soils.

The governing equations of the mechanics of grounds and, in particular, of soils, fall into two types: (1) equa-
tions of the relation between stresses and deformations (not involving time) and (2) equations allowing for changes in
the stresses and deformations with time. Equations of the first type describe the curves obtained by stepwise static
loading of soils in compression, shear, and punch tests where only the deformation loads which are stabilized (conven-
tionally) in each step are recorded. Equations of the second type characterize the curves which can be obtained in vari-
ous modes and under various conditions of deformation with stresses and deformations being recorded at different
fixed instants of time.

Use of equations of the first type has a number of substantial drawbacks. The dependences of the form σ =
σ(h) or σ = σ(ε) model and allow one to take into account only residual deformations, whereas in water-unsaturated
soils reversible deformations also take place. The values of both reversible and residual deformations of various soils
depend on the rate of application of the load and the time of its action. However, relations of the first type do not
reflect this fact and do not make it possible to take into account in calculations the effect of loads which change with
time according to different laws.

The above drawbacks can justifiably be overcome by using governing relations of the second kind, i.e.,
rheological equations or equations of viscoelasticity theory.

To each physical state of soil, depending on its humidity, there correspond its own laws governing deforma-
tion under the effect of compression load. At moisture contents w, which are lower than the total moisture capacity
wtot, deformations arising in the soil due to its loading consist of irreversible (residual) and reversible parts. Under the
effect of loading, the soil packs and strengthens. As a result of the outer load transferred to the soil by the pressure
of the die an increase of setting caused by the increased load gradually damps and deformations become stabilized.
Residual structural deformations of soils can conventionally be referred to viscous deformations, since they arise under
the effect of any small forces and the rates of these deformations increase with increase in the acting forces.

After the removal of the outer load, reversible deformations of the soil appear; these deformations consist of
elastic and viscous deformations. Reversible deformations, which occur during a certain period of time, i.e., are char-
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acterized by the aftereffect (viscous deformations), have relatively higher values than elastic deformations [3]. The pre-
sent work is devoted to the study and mathematical modeling, with account for the time factor, of laws governing the
deformation of soils which are in the state described above (characterized by the values w < wtot).

The equations of the Maxwell and Kelvin models refer to the most simple governing rheological equations
[4]. These equations describe the properties of ideal viscoelastic media. These and some other equations of similar
structure have been used in a number of works [2] as governing relations for soils. However, the appropriateness of
the Kelvin and Maxwell models to the properties of real soils of certain granulometric composition and physical state
was not confirmed experimentally.

A more general theory which allows modeling of laws governing the deformation of media with viscoelastic
properties is the Boltzmann–Volterra heredity theory of viscoelasticity [5]. We studied the rheological properties of a
number of loamy, sandy-loam, and sandy soils at different values of their density and humidity in order to find the
corresponding governing equations based on this theory. To do this we processed a number of experimental sets of
creep curves and curves of stress relaxation in soils obtained in compression and shear. We used the experimental data
from [6–8] and others. As an example, Fig. 1, I gives the sets of creep curves εi(t) (i = 1, 2, ..., r) obtained on com-
pression of silt-loam soil in the compression device [6].

The results of the processing of experimental data showed that the laws governing compression and shear de-
formations of a number of soils with time are to a high degree of accuracy modeled by the linear integral Volterra
equation of the second kind with a nonlinear free term

ϕ0 (ε) = σ (t) + ∫ 
0

t

K (t − τ) σ (τ) dτ (1)

and the Koltunov kernel

K (t) = 
exp (− βt)

t
  ∑ 

n=1

∞

 
[AΓ (α)]n

 t
αn

Γ (αn)
 ,   0 < α < 1 . (2)

The resolvent of Eq. (1) with kernel (2) is the function 

T (t) = A exp (− βt) tα−1 (3)

Fig. 1. Creep in compression of the silt-loam soil (density ρ = 1.34 g/cm3, hu-
midity w = 17%): I, experimental (a) and calculated (b) curves of soil creep;
1) σ = 0.0125; 2) 0.025; 3) 0.05; 4) 0.075; 5) 0.1, 6) 0.15 MPa; coincidence
of experimental and calculated curves (c); II, experimental (1) and theoretical
(2) curves of soil compliance [1), fexp(t) ⁄ λ1; 2) (5)]; III, experimental iso-
chrones [1) t = 3, 2) 10; 3) 60]; a and b, calculated curves σ = ϕ0(ε) (dashed
curve — approximation) and σ = ϕ∞(ε), respectively; curves 3 and b coincide.
t, sec.
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which is the Rzhanitsyn kernel. The nonlinear function ϕ0(ε) describes the curve of instantaneous deformation (at t =
0).

Assuming in (1) σ(t) = σi = const, we obtain the equations of creep curves

ϕ0 (ε) = σi f (t) ,   i = 1, 2, ..., r , (4)

where

f (t) = 1 + ∫ 
0

t

K (t − τ) dτ (5)

is the compliance function.
Relation (4) reflects the similarity of isochrones, i.e., the curves σ = ϕj(ε), which correspond to various fixed

instants of time t = tj (j = 0, 1, 2, ...). A combination of the similarity factors λj shifting the isochrones labeled t =
tj to the curve of instantaneous deformation σ = ϕ0(ε) represents experimental values fexp(t) of the function f(t).

The graphs of the functions fexp(t)/λ1 and f(t) corresponding to the creep curves (Fig. 1, I) are shown in Fig.
1, II, while the curve σ = ϕ0(ε) found from these data is shown in Fig. 1, III.

For a number of soils we determined the numerical values of the parameters of kernel (2) of the integral
rheological equation (1) using the technique suggested by Koltunov [5] and also found the numerical values of the
functions σ = ϕ0(ε). The quantities obtained were used to construct computation creep curves of soils (Fig. 1, I). Cer-
tain experimental and calculated curves coincide in the scale of the figure. For the creep curves the mean value of
relative deviations δ of the calculated data from the experimental ones, which was computed by processing 62 results
of measurement, is δmean = 2.4%, and the root-mean-square (standard) deviation for δ is 3.38%. The results obtained
indicate the adequacy of modeling the experimentally found rheological properties by Eq. (1) with kernel (2), with (1)
describing the laws governing the deformations of soils with time very accurately.

At stresses σ < σst we can find the curve of the limiting state σ = ϕ∞(ε) — the isochrone labeled t = ∞. The
curves ϕ0(ε) and ϕ∞(ε) bound the entire possible region of soil deformation from above and below, respectively (Fig.
1, III).

Use of (1) allows one to complement and generalize the results of earlier studies of the laws governing the
deformations of soils [3]. Indeed, on the basis of (4) any governing equation of the first type can be considered as the
equation of the isochrone labeled t = tstab, where tstab is the time of conventional stabilization of deformation in each
step of loading in static tests without regard for the time factor.

To solve a number of practical problems it is of importance to find a simpler governing equation, as com-
pared to (1), which approximately replaces it at small t.

We approximate, at t 2 [0; t1], expression (5) by the linear function f(t) = 1 + pt, where t1 is a certain rather
small value of time. In this approximation, K(t) C p = const. It is known from experiments that at rather small values
of σ deformations and stresses are almost proportional, and the curve σ = ϕ0(ε) has a form close to a straight line.
Let ε 2 [0; ε1], where ε1 is a certain fixed small value of deformation. With the indicated approximations of the func-
tions K(t) and σ = ϕ0(ε) the integral equation (1) at comparatively small t and ε can approximately be replaced by the
differential equation

 
dσ
dt

 + pσ = q 
dε
dt

 . (6)

The limits of applicability of Eq. (6) to specific soils must be found from experimental data.
Thus, we showed the interrelation of two types of rheological models of deformation of soils, viz., integral

and differential equations.
Equation (6) was suggested for modeling the laws governing the deformation of compacting soils also on the

basis of a theoretical analysis of the experimentally found deformation properties of soils studied in a number of
works [3].
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The equations which describe the laws governing the deformation of an ideal viscoelastic Maxwell model and
Eq. (6) are similar in structure but differ in the physical meaning of the parameters. The quantities p and q from Eq.
(6) characterize the rheological properties of the soil as a set without dividing them into the elastic and viscous com-
ponents.

The possibility and merits of modeling by Eq. (6) the laws governing the compression of the derno-podzolic
easy-loamy soil of a certain granulometric composition at humidity w = 16–26% [9–11] and black-earth soils of Cen-
tral Povolzhie [12] and of others have been confirmed experimentally.

In the formulas obtained on the basis of (6), it is expedient to represent the characteristic p as p = gω, where
ω is the frequency of the harmonic process of deformation arising, in particular, due to the loading of the soil in roll-
ing of a cylindrical die or a wheel. The characteristics of the viscoelastic properties of the soil g and q can be found
from processing the experimental data by the technique of [10]. For investigation of the derno-podzolic easy-loamy
soil we suggest the following linear regression equations obtained by processing the experimental data (at ρd =
ρ ⁄ (1 + 0.01w) = 1.138−1.579 g/cm3, w = 16–26%, ω = 0.93–5.01 sec−1):

g = 14.655 − 6.716ρ − 0.581ω + 0.085w , (7)

q = − 9.654 + 14.981ρ + 0.245ω − 0.315w (8)

with coefficients of multiple correlation of 0.7931 and 0.7528, respectively.
We have studied and modeled mathematically the creep processes of soils whose rheological properties are de-

scribed by Eq. (6). In this case, we have assumed that the deforming soil layer which spreads to a depth H, lies on a
rigid base, e.g., on a soil layer whose deformations are negligibly small. The surfaces of both the deforming soil layer
and the rigid base are horizontal. The outer load is transferred to the soil surface via the die.

According to the results of statistical processing of experimental data, the dependence of the density ρ of the
deforming soil layer before the action of the outer load on it on the depth y was taken to be linear:

ρ (y) = ρl + ky . (9)

We considered two stages of variation of the stressed-deformed state of the soil. In the first (initial) stage, at
t 2 [0; t0], both deformations and stresses in the soil change, increasing from their zero values to ε0 and σ0. In the
second stage (creep), at t 2 (t0, ∞), stresses σ = σ0 = const and relative compression deformation of the soil changes
with time ε = ε(t). We studied creep processes arising after initial deformation of the soil by the harmonic and linear
laws.

Let variation of compression deformations in the first stage occur by the harmonic law

σ (t) = σm sin ωt ,   t 2 [0; t0] . (10)

Having substituted dσ ⁄ dt into (6), with account for the initial condition (at t = 0 deformation ε = 0) we obtain

ε (t) = 
σm

q
 (sin ωt − g cos ωt + g) ,   t 2 [0; t0] . (11)

The numerical values of the quantities g and q which enter into (11) correspond to ρ = ρl.
As a result of the action of the outer load, soil deformation, the depth of propagation of the deforming soil

layer, and density change with time. Before the beginning of the creep stage, we have h0 = h(t0) and H0 = H − h0.
On the basis of the solution of the boundary-value problems of propagation of viscoelastic damping waves of

compression deformations, which arise under the action of an outer load in the soil having variable, linearly dependent
on depth, density, we obtained formulas and algorithms which allow one to obtain the depth of propagation of the
compression deformation Hpr of the soil, the density increment ∆ρ(y), and the soil density at different depths [11]. In
the investigation, the results of which are presented in this paper, we considered the case where the value of H is
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small, with Hpr = H. We assume that at the depth H the soil, before the action of the outer load on it, had a maxi-
mum possible density; therefore, ∆ρ(H) = 0.

In the second stage of variation of the stressed-deformed state of the soil, we take the coordinate y = h0 as a
new origin of depth reckoning y~ (i.e., the soil surface). At the beginning of the creep process (at y~ = 0) the soil den-
sity is

ρ0
l

 = ρl + kh0 + ∆ρ (h0) . (12)

According to [11], the dependence of the soil density on y~ can be taken to be linear with a high degree of
accuracy. With ρ0

l

 and ρ(H0) being known, we find the dependence of the form (9) of the soil density on y~. In this
case, in Eq. (9) y = y~, ρ(y) = ρ0(y~), ρl = ρ0

l

, and k = k0.
As the soil density changes, the relaxation properties of the soil, which will be determined by new values of

g0 and q0 of the characteristics of its viscoelastic properties, which at the beginning of the creep stage correspond to
the equality ρ = ρ0

l

, will also change. In the creep stage σ = σ0 = σm, sin ωt0 = const. Substituting dσ ⁄ dt = 0 into
(6) and allowing for the initial condition (at t = t0 deformation ε = ε0), we obtain the formula characterizing the creep
process of the soil:

ε (t) = ε0 + 
g0ω
q0

 σ0t ,   t 2 (t0, ∞) . (13)

The quantity ε0 which enters into (13) is determined by (11) at t = t0.
At constant values of the parameters Eq. (13) describes linear creep typical of the ideal viscoelastic Maxwell

media, but not of a real soil. When σ0 < σst, its deformation stabilizes with time.
The values of the compression deformation of the soil, the depth of the deforming soil layer, and charac-

teristics g and q of its viscoelastic properties, which change during the creep process until the onset of deformation
stabilization, are continuous functions of time. It is approximately assumed that in small time intervals they are con-
stant, with their changes occurring stepwise. We developed an algorithm for determining, during small intervals of
time ∆ts = ts − ts−1 (s = 1, 2, ..., N), the increments of the relative ∆εs and absolute ∆hs compression deformations of
the soil, increments of soil density at different depths, characteristics qs and gs of the viscoelastic properties of the
soil, total settlement of the soil hs at t = ts−1, depth of the deforming soil layer Hs, and factors of the stressed-de-
formed state of the soil at different fixed instants of time.

As time goes on, the characteristic qs increases and gs decreases; here ∆hs → 0, hs → hstab = const. The time
during which hs reaches hstab is the time of deformation stabilization tstab. From the calculations we obtain: at ∆ts =
∆tN the increment of settlement ∆hN C 0, the total settlement of the soil hN C hstab and tN C tstab.

We developed computer software which allows one, using the obtained formulas and algorithms, to determine
the factors characterizing the stressed-deformed state and the density of the soil at different fixed instants of time dur-
ing its loading at t 2 [0; t0] and in the creep process. With this software we calculated the factors mentioned for the
derno-podzolic easy-loamy soil of the known granulometric composition at a soil humidity of w = 16–24%, having as-
sumed H = 0.51 m.

We studied the effect of the initial density and humidity of the soil, rate of change of stresses in loading, and
time t0 on creep and compaction of the soil. To reveal the character and to obtain the quantitative estimate of the ef-
fect of these factors, we conducted a series of calculations (computer experiments).

We determined the increments ∆εs and ∆hs in time intervals ∆ts, the total values of εs and hs at different
fixed instants of time ts 2 [0; tN] (tN C tstab), and also the corresponding values of ∆ρ(∆hs) and density ρ0(0.05) of the
soil, the parameters of the linear dependence of the density of the soil on the depth and the characteristics of its vis-
coelastic properties. As approximate values of tstab we took the instants of time to which values ∆εs ≤ 10−5 corre-
sponded.

We conducted eight series of one-factor experiments and two series of complete three-factor experiments (nu-
merical computer experiments). These experiments were conducted for two regimes of variation of stresses at
t 2 [0; t0]: by the harmonic law (10) at t0 = 0.1 sec and ω = 3.15 sec−1 and by the linear law σ = vt (v > 0 = const)
at t0 = 0.1 sec and v = 1.2 m/sec.
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In each series of one-factor experiments, one of the four main affecting factors were varied: (1) initial density
of the soil; (2) frequency ω or linear velocity v of variation of stresses at t 2 [0; t0]; (3) humidity of the soil w, or
(4) time t0.

We revealed the substantial influence of the quantities ρl, w, and ω or v and t0 on the change of σ(t) and ε(t)
and of other factors with time.

Figures 2 and 3 give graphs which reflect the results of some experiments. The obtained dependences ε(t)
show that at the same value of σ0 to higher values of the initial density of the soil there correspond smaller values of

Fig. 2. Dependence of relative compression deformation of the soil (a) and its
increment (b) on time from the onset of creep at different values of initial
density (w  = 19%; σm = 36 kPa; ω = 3.15 sec−1; t0 = 0.1 sec): 1) ρl = 1.1
g/cm3 and k = 1.7647 g/(cm3⋅m); 2) 1.2 and 1.5686; 3) 1.3 and 1.3725; 4) 1.5
and 0.9804; 5) 1.7 and 0.5882; 6) 1.9 and 0.1960. t, sec.

Fig. 3. Creep of the derno-podzolic easy-loamy soil at different values of rate
of initial loading of the soil (a) [1) ω = 0.9 sec−1; 2) 2; 3) 3; 4) 4; 5) 5.4
(t0 = 0.1 sec, w = 19%)], humidity of the soil (b) [1) w = 16%; 2) 20; 3) 22
(t0 = 0.1 sec, ω = 3.15 sec−1)], and time of initial loading (c) [1) t0 = 0.1 sec;
2) 0.15; 3) 0.25; 4) 0.3; 5) 0.5 (w = 19%, ω = 3.15 sec−1)]; ρ

l

 = 1.1 g/cm3;
k = 1.7647 g/(cm3⋅m); σm = 35 kPa. t, sec.
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ε0. As ρl increases, the quantities εlim, ∆ρ(h0), and tstab decrease. With increase in the rate of loading at t 2 [0; t0] the
deformation of the soil increases and the quantities εlim and tstab decrease. An increase in dσ ⁄ dt at t 2 [0; t0] leads to
compactness of the soil.

At the same compression stresses, deformations ε(t) in moister soil are more substantial. As the humidity of
the soil increases, the quantities ε0, εlim, ∆ρ(h0), and tstab also increase.

Stresses σ0 increase with time t0; therefore, the curves ε(t) shown in Fig. 3c characterize the influence of σ0
on creep. The results obtained show that an increase in t0 (and correspondingly σ0) causes an increase in the quantities
ε(t) (when t < tstab), ρ0(h0), and εlim.

The results of complete factor computer experiments were used for obtaining correlation dependences of com-
pression stresses in the soil and of other factors on ρl, w, and also ω or v at different fixed instants of time t ≤ tstab.
The coefficients of the regression equations, their significance, and the adequacy of the regression equations were de-
termined by the technique of [13]. Verification by the Fischer criterion at the 5% significance level showed that the
obtained regression equations are adequate (i.e., are suitable for description of experimental data). An analysis showed
that almost all the studied factors are affected by the initial density of the soil and the rate of deformation. The mean
values of the quantities ε0, ε(t), and h(t) decrease as ρl increases, whereas with increase in ω they increase.

The obtained regression equations indicate that the effect of soil humidity within the considered range of its
variation is much smaller than the effect of ρl and the rate of deformation at t 2 [0; t0]. It is revealed that all the fac-
tors considered increase with w.

The indicated character of the effect of the initial density and humidity of the soil on its creep and compact-
ness stem from the following fact. As ρl increases, the characteristic q increases, with q → E, and the characteristic g
decreases, with g → 0. In this case, the properties of the soil approach elastic ones. With increase in the humidity w
of the soil, the characteristic g of its viscoelastic properties increases and the characteristic q decreases, with q → 0. In
this case, the elasticity of the soil decreases and the properties of the soil approach flowing ones.

The obtained results of the study of the process of creep of soils are in agreement with the experimental data
from the works dealing with the creep processes in soils [3, 6–8, 11, 12] and other deformable media [5].

CONCLUSIONS

1. We suggested and substantiated mathematical models of deformation of compacting soils under different
conditions of their loading: the integral equation (1) with kernel (2) and the differential equation (6).

2. It is shown that (1) very accurately models the laws governing the deformation of soils of various granu-
lometric compositions with time within a wide range of variation of their density and humidity.

3. At rather small values of t and ε, the integral equation (1) can, in approximation, be replaced by the dif-
ferential equation (6). The possibilities and merits of modeling of the laws governing the compression of a number of
soils by Eq. (6) are confirmed experimentally.

4. The interrelation between two different types of mathematical models of the laws governing deformation of
soils — the equations which relate deformations and stresses not involving time and the equations which describe the
rheological properties of soils — is revealed.

5. The interrelation of the rheological models of deformation of soils — integral and differential equations —
are substantiated.

6. On the basis of mathematical modeling of the viscoelastic properties of soils by the differential equation (6)
we obtained analytical relationships and algorithms which allow one to find (by computation) the factors of the
stressed-deformed state of the soil under different conditions of loading with account for the time factor and in creep
and also to determine the increment of the soil density at different depths which arises under the action of the outer
load.

7. As a result of computer experiments, we found the factors characterizing the creep of the derno-podzolic
easy-loamy soil and its compactness and strengthening in loading according to different laws and in the creep process.

8. Correlation dependences of the factors studied on the initial density of the soil, its humidity, and the rate
of deformation at t 2 [0; t0] are revealed. These dependences allowed estimation of the effect of the most important
factors on the occurrence of relaxation processes in the soil.
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9. The results obtained can be used in the development of a complex of measures aimed at conserving and
improving the fertility of soils.

NOTATION

σ, compression stress, MPa; h, absolute compression deformation, m; ε, relative compression deformation; t,
time, sec; w, weighting (absolute) humidity of the soil, %; wtot, total moisture capacity of the soil, %; τ, current time
preceding the time instant t, sec; K(t), kernel of the integral equation; A, α, and β, parameters of the kernel of the
determining integral equation (1) for the soil; Γ(α), gamma-function; n, ordinal number of the term in the functional
series in formula (2); σ = ϕj(ε), equations of isochrones; σ = ϕ0(ε), equation of the curve of instantaneous deformation
(isochrone corresponding to t = 0); λj, similarity coefficients; δ, mean value of relative deviations of the calculated data
from those obtained experimentally; σst, strength limit of the soil, MPa; p and q, parameters of the determining differ-
ential equation (6) for the soil (characteristics of viscoelastic properties of the soil), MPa and sec−1; ω, frequency of the
harmonic process of deformation, sec−1; g = p ⁄ ω, transformed dimensionless characteristic of viscoelastic properties of
the soil; y and y~, vertical coordinates of a particle of the deforming soil layer before soil loading (depth) and in the creep
process of the soil, m; H, depth of propagation of the deforming layer of the soil before its loading, m; ρ and ρd,
densities of moist and absolutely dry soils, g/cm3; ρl and ρ0

l

, density of the soil before its loading at y = 0 (on the soil
surface and at the beginning of the creep process at y~ = 0, g/cm3; k, angular coefficient of the straight line (9), g/(cm3⋅m);
σm, stress amplitude under loading by the harmonic law, MPa; Hpr, depth of propagation of the compression, deforma-
tion of the soil, m; k0, angular coefficient of the straight line ρ0(y

~ ) at the beginning of the creep process, g/(cm3⋅m); ∆,
increment of the quantity; v, linear velocity, m/sec; E, elasticity modulus, MPa. Indices: tot, total (moisture capacity);
exp, experimental values; mean, mean value; st, strength; stab, stabilization of deformation; d, dry soil; m, maximum
value; pr, propagation of deformation; lim, limiting value; i and r, number of the creep curve and their quantity in the
set (i = 1, 2, ..., r); j, number of the isochrone corresponding to the fixed instant of time tj; s and N, number of the fixed
instant of time and the quantity of such instants of time in consideration of creep and compactness of the soil in creep
(s = 1, 2, ..., N); 0, values of σ, h, ε, t, H, g, q, and k at the beginning of the creep process.
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